Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Infect Dis ; 23(1): 252, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2325849

ABSTRACT

BACKGROUND: The World Health Organization recommends changing the first-line antimicrobial treatment for gonorrhoea when ≥ 5% of Neisseria gonorrhoeae cases fail treatment or are resistant. Susceptibility to ceftriaxone, the last remaining treatment option has been decreasing in many countries. We used antimicrobial resistance surveillance data and developed mathematical models to project the time to reach the 5% threshold for resistance to first-line antimicrobials used for N. gonorrhoeae. METHODS: We used data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales from 2000-2018 about minimum inhibitory concentrations (MIC) for ciprofloxacin, azithromycin, cefixime and ceftriaxone and antimicrobial treatment in two groups, heterosexual men and women (HMW) and men who have sex with men (MSM). We developed two susceptible-infected-susceptible models to fit these data and produce projections of the proportion of resistance until 2030. The single-step model represents the situation in which a single mutation results in antimicrobial resistance. In the multi-step model, the sequential accumulation of resistance mutations is reflected by changes in the MIC distribution. RESULTS: The single-step model described resistance to ciprofloxacin well. Both single-step and multi-step models could describe azithromycin and cefixime resistance, with projected resistance levels higher with the multi-step than the single step model. For ceftriaxone, with very few observed cases of full resistance, the multi-step model was needed to describe long-term dynamics of resistance. Extrapolating from the observed upward drift in MIC values, the multi-step model projected ≥ 5% resistance to ceftriaxone could be reached by 2030, based on treatment pressure alone. Ceftriaxone resistance was projected to rise to 13.2% (95% credible interval [CrI]: 0.7-44.8%) among HMW and 19.6% (95%CrI: 2.6-54.4%) among MSM by 2030. CONCLUSIONS: New first-line antimicrobials for gonorrhoea treatment are needed. In the meantime, public health authorities should strengthen surveillance for AMR in N. gonorrhoeae and implement strategies for continued antimicrobial stewardship. Our models show the utility of long-term representative surveillance of gonococcal antimicrobial susceptibility data and can be adapted for use in, and for comparison with, other countries.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Female , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Homosexuality, Male , Drug Resistance, Bacterial , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Microbial Sensitivity Tests
2.
Health Care Manag Sci ; 26(2): 301-312, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2209415

ABSTRACT

Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes and relaxation of mitigation measures leave many US communities at risk for surges of COVID-19 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop a framework to generate simple classification rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. This framework uses a simulation model of SARS-CoV-2 transmission and COVID-19 hospitalizations in the US to train classification decision trees that are robust to changes in the data-generating process and future uncertainties. These generated classification rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We show that these classification rules present reasonable accuracy, sensitivity, and specificity (all ≥ 80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19. Our proposed classification rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Hospitalization , Hospitals , Age Distribution
3.
Elife ; 112022 11 16.
Article in English | MEDLINE | ID: covidwho-2119277

ABSTRACT

Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear. Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions. Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct <30) 5 days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+days with Ct <30 following an initial clearance of 3+days with Ct ≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals. Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines. Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.


Subject(s)
COVID-19 , Dermatitis , Humans , Aged , SARS-CoV-2/genetics , RNA, Viral , Retrospective Studies , COVID-19/epidemiology , Antibodies, Viral
5.
Antimicrob Agents Chemother ; 66(7): e0019222, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1901914

ABSTRACT

A consensus methodology for the pharmacometric assessment of candidate SARS-CoV-2 antiviral drugs would be useful for comparing trial results and improving trial design. The time to viral clearance, assessed by serial qPCR of nasopharyngeal swab samples, has been the most widely reported measure of virological response in clinical trials, but it has not been compared formally with other metrics, notably model-based estimates of the rate of viral clearance. We analyzed prospectively gathered viral clearance profiles from 280 infection episodes in vaccinated and unvaccinated individuals. We fitted different phenomenological pharmacodynamic models (single exponential decay, bi-exponential, penalized splines) and found that the clearance rate, estimated from a mixed effects single exponential decay model, is a robust pharmacodynamic summary of viral clearance. The rate of viral clearance, estimated from viral densities during the first week following peak viral load, provides increased statistical power (reduced type 2 error) compared with time to clearance. Antiviral effects approximately equivalent to those with currently used and recommended SARS-CoV-2 antiviral treatments, notably nirmatrelvir and molnupiravir, can be detected from randomized trials with sample sizes of only 35 to 65 patients per arm. We recommend that pharmacometric antiviral assessments should be conducted in early COVID-19 illness with serial qPCR samples taken over 1 week.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials as Topic , Humans , Kinetics , Treatment Outcome , Viral Load
6.
Clin Infect Dis ; 75(1): e105-e113, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852991

ABSTRACT

BACKGROUND: Estimating the cumulative incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for setting public health policies. We leveraged deidentified Massachusetts newborn screening specimens as an accessible, retrospective source of maternal antibodies for estimating statewide seroprevalence in a nontest-seeking population. METHODS: We analyzed 72 117 newborn specimens collected from November 2019 through December 2020, representing 337 towns and cities across Massachusetts. Seroprevalence was estimated for the Massachusetts population after correcting for imperfect test specificity and nonrepresentative sampling using Bayesian multilevel regression and poststratification. RESULTS: Statewide seroprevalence was estimated to be 0.03% (90% credible interval [CI], 0.00-0.11) in November 2019 and rose to 1.47% (90% CI: 1.00-2.13) by May 2020, following sustained SARS-CoV-2 transmission in the spring. Seroprevalence plateaued from May onward, reaching 2.15% (90% CI: 1.56-2.98) in December 2020. Seroprevalence varied substantially by community and was particularly associated with community percent non-Hispanic Black (ß = .024; 90% CI: 0.004-0.044); i.e., a 10% increase in community percent non-Hispanic Black was associated with 27% higher odds of seropositivity. Seroprevalence estimates had good concordance with reported case counts and wastewater surveillance for most of 2020, prior to the resurgence of transmission in winter. CONCLUSIONS: Cumulative incidence of SARS-CoV-2 protective antibody in Massachusetts was low as of December 2020, indicating that a substantial fraction of the population was still susceptible. Maternal seroprevalence data from newborn screening can inform longitudinal trends and identify cities and towns at highest risk, particularly in settings where widespread diagnostic testing is unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Infant, Newborn , Neonatal Screening , Retrospective Studies , Seroepidemiologic Studies , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Am J Epidemiol ; 191(8): 1519-1520, 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-1806267
8.
Clin Infect Dis ; 74(9): 1682-1685, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1704010

ABSTRACT

Findings are described in 7 patients with severe acute respiratory syndrome coronavirus 2 reinfection from the National Basketball Association 2020-2021 occupational testing cohort, including clinical details, antibody test results, genomic sequencing, and longitudinal reverse-transcription polymerase chain reaction results. Reinfections were infrequent and varied in clinical presentation, viral dynamics, and immune response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection , Research
10.
Science ; 371(6532): 916-921, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1532943

ABSTRACT

Limited initial supply of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine raises the question of how to prioritize available doses. We used a mathematical model to compare five age-stratified prioritization strategies. A highly effective transmission-blocking vaccine prioritized to adults ages 20 to 49 years minimized cumulative incidence, but mortality and years of life lost were minimized in most scenarios when the vaccine was prioritized to adults greater than 60 years old. Use of individual-level serological tests to redirect doses to seronegative individuals improved the marginal impact of each dose while potentially reducing existing inequities in COVID-19 impact. Although maximum impact prioritization strategies were broadly consistent across countries, transmission rates, vaccination rollout speeds, and estimates of naturally acquired immunity, this framework can be used to compare impacts of prioritization strategies across contexts.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Health Priorities , Mass Vaccination , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/mortality , COVID-19/transmission , COVID-19 Vaccines/immunology , Child , Humans , Immunogenicity, Vaccine , Middle Aged , Models, Theoretical , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
11.
Clin Infect Dis ; 72(9): e412-e414, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1387750

ABSTRACT

Various forms of "immune passports" or "antibody certificates" are being considered in conversations around reopening economies after periods of social distancing. A critique of such programs focuses on the uncertainty around whether seropositivity means immunity from repeat infection. However, an additional important consideration is that the low positive predictive value of serological tests in the setting of low population seroprevalence and imperfect test specificity will lead to many false-positive passport holders. Here, we pose a simple question: how many false-positive passports could be issued while maintaining herd immunity in the workforce? Answering this question leads to a simple mathematical formula for the minimum requirements of serological tests for a passport program, which depend on the population prevalence and the value of the basic reproductive number, R0. Our work replaces speculation in the press with rigorous analysis, and will need to be considered in policy decisions that are based on individual and population serology results.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Predictive Value of Tests , SARS-CoV-2 , Seroepidemiologic Studies , Serologic Tests
12.
medRxiv ; 2020 May 06.
Article in English | MEDLINE | ID: covidwho-1388077

ABSTRACT

The extent and duration of immunity following SARS-CoV-2 infection are critical outstanding questions about the epidemiology of this novel virus, and studies are needed to evaluate the effects of serostatus on reinfection. Understanding the potential sources of bias and methods to alleviate biases in these studies is important for informing their design and analysis. Confounding by individual-level risk factors in observational studies like these is relatively well appreciated. Here, we show how geographic structure and the underlying, natural dynamics of epidemics can also induce noncausal associations. We take the approach of simulating serologic studies in the context of an uncontrolled or a controlled epidemic, under different assumptions about whether prior infection does or does not protect an individual against subsequent infection, and using various designs and analytic approaches to analyze the simulated data. We find that in studies assessing the efficacy of serostatus on future infection, comparing seropositive individuals to seronegative individuals with similar time-dependent patterns of exposure to infection, by stratifying or matching on geographic location and time of enrollment, is essential to prevent bias.

14.
Health Aff (Millwood) ; 40(8): 1321-1327, 2021 08.
Article in English | MEDLINE | ID: covidwho-1337565

ABSTRACT

Early in the COVID-19 pandemic, outpatient clinics throughout the US shifted toward virtual care to limit viral transmission in the office. However, as health care facilities have reopened, evidence about the risk of acquiring respiratory viral infections in medical office settings remains limited. To inform policy for reopening outpatient care settings, we analyzed rates of potential airborne disease transmission in medical office settings, focusing on influenza-like illness. We quantified whether exposed patients (that is, those seen in a medical office after a patient with influenza-like illness) were more likely to return with a similar illness in the next two weeks compared with nonexposed patients seen earlier in the day. Patients exposed to influenza-like illness in the medical office setting were more likely than nonexposed patients to revisit with a similar illness within two weeks (adjusted absolute difference: 0.7 per 1,000 patients). Similar patterns were not observed for exposure to urinary tract infection and back pain as noncontagious control conditions. These results highlight the potential threat of reopening outpatient clinics during the pandemic and the value of virtual visits for patients with suspected respiratory infections.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Infection Control , Outpatients , Pandemics , Physicians' Offices , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2
15.
PLoS Biol ; 19(7): e3001333, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305572

ABSTRACT

SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. We used prospective longitudinal quantitative reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-2020 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. According to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5, 23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95% CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test within 2 days after an initial positive PCR test substantially improves certainty about a patient's infection stage. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. These findings indicate that SARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patient's progress through infection stages. Frequent, rapid-turnaround testing is needed to effectively screen individuals before they become infectious.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Virus Shedding/genetics , Adult , Athletes , Basketball , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Male , Prospective Studies , Public Health/methods , SARS-CoV-2/growth & development , Severity of Illness Index , United States/epidemiology
16.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: covidwho-1232679

ABSTRACT

Background: The impact of variable infection risk by race and ethnicity on the dynamics of SARS-CoV-2 spread is largely unknown. Methods: Here, we fit structured compartmental models to seroprevalence data from New York State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk change across groups. Results: A simple model where interactions occur proportionally to contact rates reduced the HIT, but more realistic models of preferential mixing within groups increased the threshold toward the value observed in homogeneous populations. Across all models, the burden of infection fell disproportionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic whites. Conclusions: Our findings, which are meant to be illustrative and not best estimates, demonstrate how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions of SARS-CoV-2 infection. Funding: K.C.M. was supported by National Science Foundation GRFP grant DGE1745303. Y.H.G. and M.L. were funded by the Morris-Singer Foundation. M.L. was supported by SeroNet cooperative agreement U01 CA261277.


Subject(s)
COVID-19/epidemiology , Health Status Disparities , Models, Statistical , Pandemics/statistics & numerical data , Black or African American/statistics & numerical data , Asian People/statistics & numerical data , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Cost of Illness , Hispanic or Latino/statistics & numerical data , Humans , Immunity, Herd , Minority Groups/statistics & numerical data , New York/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , White People/statistics & numerical data
17.
JAMA Intern Med ; 181(7): 960-966, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1196360

ABSTRACT

Importance: Clinical data are lacking regarding the risk of viral transmission from individuals who have positive reverse-transcription-polymerase chain reaction (RT-PCR) SARS-CoV-2 test results after recovery from COVID-19. Objective: To describe case characteristics, including viral dynamics and transmission of infection, for individuals who have clinically recovered from SARS-CoV-2 infection but continued to have positive test results following discontinuation of isolation precautions. Design, Setting, and Participants: This retrospective cohort study used data collected from June 11, 2020, to October 19, 2020, as part of the National Basketball Association (NBA) closed campus occupational health program in Orlando, Florida, which required daily RT-PCR testing and ad hoc serological testing for SARS-CoV-2 IgG antibodies. Nearly 4000 NBA players, staff, and vendors participated in the NBA's regular and postseason occupational health program in Orlando. Persistent positive cases were those who recovered from a documented SARS-CoV-2 infection, satisfied US Centers for Disease Control and Prevention criteria for discontinuation of isolation precautions, and had at least 1 postinfection positive RT-PCR test(s) result. Exposures: Person-days of participation in indoor, unmasked activities that involved direct exposure between persistent positive cases and noninfected individuals. Main Outcomes and Measures: Transmission of SARS-CoV-2 following interaction with persistent positive individuals, as measured by the number of new COVID-19 cases in the Orlando campus program. Results: Among 3648 individuals who participated, 36 (1%) were persistent positive cases, most of whom were younger than 30 years (24 [67%]) and male (34 [94%]). Antibodies were detected in 33 individuals (91.7%); all remained asymptomatic following the index persistent positive RT-PCR result. Cycle threshold values for persistent positive RT-PCR test results were typically above the Roche cobas SARS-CoV-2 limit of detection. Cases were monitored for up to 100 days (mean [SD], 51 [23.9] days), during which there were at least 1480 person-days of direct exposure activities, with no transmission events or secondary infections of SARS-CoV-2 detected (0 new cases). Conclusions and Relevance: In this retrospective cohort study of the 2020 NBA closed campus occupational health program, recovered individuals who continued to test positive for SARS-CoV-2 following discontinuation of isolation were not infectious to others. These findings support time-based US Centers of Disease Control and Prevention recommendations for ending isolation.


Subject(s)
Antibodies, Viral/analysis , Basketball/statistics & numerical data , COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , Pandemics , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Retrospective Studies , United States/epidemiology , Young Adult
18.
Nat Rev Immunol ; 21(5): 330-335, 2021 05.
Article in English | MEDLINE | ID: covidwho-1164868

ABSTRACT

When vaccines are in limited supply, expanding the number of people who receive some vaccine, such as by halving doses or increasing the interval between doses, can reduce disease and mortality compared with concentrating available vaccine doses in a subset of the population. A corollary of such dose-sparing strategies is that the vaccinated individuals may have less protective immunity. Concerns have been raised that expanding the fraction of the population with partial immunity to SARS-CoV-2 could increase selection for vaccine-escape variants, ultimately undermining vaccine effectiveness. We argue that, although this is possible, preliminary evidence instead suggests such strategies should slow the rate of viral escape from vaccine or naturally induced immunity. As long as vaccination provides some protection against escape variants, the corresponding reduction in prevalence and incidence should reduce the rate at which new variants are generated and the speed of adaptation. Because there is little evidence of efficient immune selection of SARS-CoV-2 during typical infections, these population-level effects are likely to dominate vaccine-induced evolution.


Subject(s)
COVID-19/prevention & control , Off-Label Use , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/methods , Vaccines/administration & dosage , Biological Evolution , COVID-19/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Vaccination/psychology
19.
Elife ; 102021 03 05.
Article in English | MEDLINE | ID: covidwho-1119624

ABSTRACT

Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Age Factors , Aged , Bayes Theorem , COVID-19/diagnosis , COVID-19 Serological Testing , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Uncertainty , Young Adult
20.
Nat Rev Immunol ; 20(11): 709-713, 2020 11.
Article in English | MEDLINE | ID: covidwho-834892

ABSTRACT

Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.


Subject(s)
Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Coronaviridae Infections/prevention & control , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adaptive Immunity/drug effects , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Vaccines , Coronaviridae/drug effects , Coronaviridae/immunology , Coronaviridae Infections/epidemiology , Coronaviridae Infections/immunology , Coronaviridae Infections/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions , Humans , Immunity, Herd/drug effects , Immunologic Memory , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Rhinovirus/drug effects , Rhinovirus/immunology , SARS-CoV-2 , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL